XICHANG, June 22 (Xinhua) — China on Saturday launched an astronomical satellite, the result of nearly 20 years of hard work between Chinese and French scientists, to capture gamma-ray bursts which flicker like fireworks in the farthest reaches of the universe.
The satellite, the Space-based Multi-band Variable Object Monitor (SVOM), was launched by a Long March-2C rocket from the Xichang Satellite Launch Center in southwest China’s Sichuan Province, according to the China National Space Administration.
“We are looking forward to some important discoveries, such as the earliest gamma-ray bursts that occurred when the universe was still in its childhood, which will help us study cosmic evolution,” said Wei Jianyan, who is SVOM’s Chinese principal investigator and works at the Chinese Academy of Sciences’ National Astronomical Observatories.
Gamma-ray bursts, usually very short in duration, are the most violent explosive phenomena in the universe after the Big Bang, and they occur during the collapse of massive stars or the merging of binary compact stars. The in-depth observation of and research on gamma-ray bursts will help us understand some of science’s fundamental questions, Wei said.
The main scientific objectives of SVOM include searching for and rapidly locating various gamma-ray bursts, comprehensively measuring and studying the electromagnetic radiation properties of these bursts, studying dark energy and the evolution of the universe through these bursts, and observing electromagnetic signals associated with gravitational waves, according to Wei.
Bertrand Cordier, SVOM’s French principal investigator who works at the French Alternative Energies and Atomic Energy Commission, said, “By using the gamma-ray bursts as a tool to observe the early universe, we can observe maybe the first stars. This is very interesting because this is the only way to get information about the universe at this age.”
Four scientific instruments are installed on the satellite, two of which have been developed by China and two by France. The four instruments can realize a large field of view and high-precision observation.